This object has the results when a neural network was tuned using Bayesian optimization and a validation set.
Details
The code used to produce this object:
data(ames)
ames <-
ames %>%
select(Sale_Price, Neighborhood, Longitude, Latitude, Year_Built) %>%
mutate(Sale_Price = log10(ames$Sale_Price))
set.seed(1)
ames_rs <- validation_split(ames)
ames_rec <-
recipe(Sale_Price ~ ., data = ames) %>%
step_dummy(all_nominal_predictors()) %>%
step_zv(all_predictors()) %>%
step_normalize(all_predictors())
mlp_spec <-
mlp(hidden_units = tune(),
penalty = tune(),
epochs = tune()) %>%
set_mode("regression")
set.seed(1)
ames_mlp_itr <-
mlp_spec %>%
tune_bayes(
ames_rec,
resamples = ames_rs,
initial = 5,
iter = 4,
control = control_bayes(save_pred = TRUE)
)